基本不等式说课课件【精彩5篇】
【导言】此例“基本不等式说课课件【精彩5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
2020高中数学基本不等式教学教案【第一篇】
[教学目标]
依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
二、 [教学重点]
基本不等式 的证明过程及应用。
三、 [教学难点]
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;
2、灵活利用基本不等式求解实际问题中的最大值和最小值。
四、 [教学方法]
本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。
[教学用具]
多媒体、几何画板
六、 [教学过程]
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
(一)、创设情景,提出问题;
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
同时,(几何画板辅助教学)通过几何画板演示,
让学生更直观的抽象、归纳出结论:
(二)、抽象归纳:
一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?
答案: 。
归纳总结
如果 都是正数,那么 ,当且仅当 时,等号成立。
我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。
(三)、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、符号语言叙述:
若 ,则有 ,当且仅当 时, 。
[问] 怎样理解“当且仅当”?
3、探究基本不等式证明方法:
[问] 如何证明基本不等式?
方法一:作差比较或由 展开证明。
方法二:分析法。
分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
4、探究基本不等式的几何意义:
基本不等式教案【第二篇】
课题: 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?
根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;
(二)能力目标:让学生探究用基本不等式解决实际问题
(三)情感、态度和价值观目标:
通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?
3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?
2.让学生探究用基本不等式解决实际问题;?
教学难点:1.让学生探究用基本不等式解决实际问题;?
2.基本不等式应用时等号成立条件的考查;?
六、教学过程 教师活动 学生活动 设计意图 (一)导入新课
(二)推进新课
已知 ,若ab为常数k,那么a+b的值如何变化?
若a+b为常数s,那么ab的值如何变化?
老师用投影仪给出本节课的第一组问题
(1)求函数y=2x2+ (x>0)的最小值。?
(2)求函数y=x2+ (x>0)的最小值。?
(3)求函数y=3x2-2x3(0 (4)求函数y=x(1-x2)(0 (5)设a>0,b>0,且a2+ =1,求 的最大值。? (三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ? (四)例题精析? 例某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少? 当且仅当a=b时,a+b就有最小值为2k.? 当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).? 学生完成 留五分钟的时间让学生思考,合作交流 (根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)? 学生思考、回答, 各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。关于本课的设计,我将从以下五个方面向各位评委老师汇报。 一、教材分析 ◆本节教材的地位和作用 ◆教学目标 ◆教学重点、难点 1、本节教材的地位和作用 "基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。 2、 教学目标 (1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。 (2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。 (3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。 3、教学重点、难点 根据课程标准制定如下的教学重点、难点 重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。 难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。 二、教法说明 本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。 三、学法指导 为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。 四、教学设计 ◆运用2002年国际数学家大会会标引入 ◆运用分析法证明基本不等式 ◆不等式的几何解释 ◆基本不等式的应用 1、运用2002年国际数学家大会会标引入 如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车) 正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_ 从图形中易得,s≥s’,即 问题1:它们有相等的情况吗?何时相等? 问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解) 一般地,对于任意实数a、b,我们有 当且仅当(重点强调)a=b时,等号成立(合情推理) 问题3:你能给出它的证明吗?(让学生独立证明) 设计意图 (1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。 (2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。 (3)三个思考题为学生创造情景,逐层深入,强化理解。 2、运用分析法证明基本不等式 如果 a>0,b>0 , 用 和 分别代替a,b可以得到 也可写成 (强调基本不等式成立的前提条件"正")(演绎推理) 问题4:你能用不等式的性质直接推导吗? 要证 ① 只要证 ② 要证② ,只要证 ③ 要证③ ,只要证 ④ 显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。 (强调基本不等式取等的条件"等") 设计意图 (1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神; (2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解; (3)此种证明方法是"分析法",在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。 3、不等式的几何解释 如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为 问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解) 设计意图 几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。 4、基本不等式的应用 例1.证明 (学生自己证明) 设计意图 (1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习"分析法"证明不等式的过程; (2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式; (3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。 例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大? (让学生分组合作、探究完成) 设计意图 (1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值; (2)强调利用不等式求最值的关键点:"正""定""等"; (3)有利于培养学生团结合作的`精神。 练习 :(1)若a,b同号,则 (2)P113 练习 设计意图 巩固基本不等式,让学生熟悉公式,并学会应用。 小结:(让学生畅所欲言) 设计意图 有利于发挥学生的主观能动性,突出学生的主体地位。 作业: 必做题:P 113 A组3、4 选做题: 设计意图 (1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成; (2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。 时间安排:引入约5分钟 证明基本不等式约10分钟 几何意义约10分钟 知识应用约15分钟 小结约5分钟 五、板书设计 分析法证明 几何解释 例题讲解 小结 作业 例2 以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢! 一、教学目标 知识与技能: 1.理解两个正数的算术平均数不小于他们之积的2倍的不等式的证明。 2.理解两个正数的算术平均数不小于它们的几何平均数的证明以及几何解释。 过程与方法 本节的学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形俩方面深入的探究不等式的证明,从而进一步突破难点。基本不等式的证明要注重严密性,每一步都有理论依据,培养学生的逻辑能力。 情感,态度与价值观 培养学生举一反三地逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力。引导学生领会运用基本不等式 的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略。 教学重点和难点 重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式 的证明过程; 难点:理解“=”成立的充要条件。 三、教学过程: 1.动手操作,几何引入 如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的。 探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形 中有4个全等的直角三角形。设直角三角形两条直角边长为 , 那么正方形的边长为 .于是, 4个直角三角形的面积之和 , 正方形的面积 . 由图可知 ,即 . 探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为 和 ( ),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗? 通过学生动手操作,探索发现: 2.代数证明,得出结论 根据上述两个几何背景,初步形成不等式结论: 若 ,则 . 若 ,则 . 学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论: (1)若 ,则 ;(2)若 ,则 请同学们用代数方法给出这两个不等式的证明。 证法一(作差法): ,当 时取等号。 (在该过程中,可发现 的取值可以是全体实数) 证法二(分析法):由于 ,于是 要证明? ,只要证明? , 即证? , 即? ,该式显然成立,所以 ,当 时取等号。 得出结论,展示课题内容 基本不等式: 若 ,则 (当且仅当 时,等号成立) 若 ,则 (当且仅当 时,等号成立) 深化认识: 称 为 的几何平均数;称 为 的算术平均数 教学目标 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 教学重点 应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程; 教学难点 基本不等式 等号成立条件 教学过程 1.课题导入 基本不等式 的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。 当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。 2.得到结论:一般的,如果 3.思考证明:你能给出它的证明吗? 证明:因为 当 所以, ,即 )从几何图形的面积关系认识基本不等式 特别的,如果a>0,b>0,我们用分别代替a、b ,可得 , 通常我们把上式写作: 2)从不等式的性质推导基本不等式 用分析法证明: 要证 (1) 只要证 a+b (2) 要证(2),只要证 a+b- 0 (3) 要证(3),只要证 ( - ) (4) 显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。 3)理解基本不等式 的几何意义 探究:课本第98页的“探究” 在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式 的几何解释吗? 易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB 即CD= . 这个圆的半径为 ,显然,它大于或等于CD,即 ,其中当且仅当点C与圆心重合,即a=b时,等号成立。 因此:基本不等式 几何意义是“半径不小于半弦” 评述:1.如果把 看作是正数a、b的等差中项, 看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项。 2.在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。 例1 已知x、y都是正数,求证: (1) ≥2; (2)(x+y)(x2+y2)(x3+y3)≥8x3y3. 分析:在运用定理: 时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形。 解:∵x,y都是正数 ∴ >0, >0,x2>0,y2>0,x3>0,y3>0 (1) =2即 ≥2. (2)x+y≥2 >0 x2+y2≥2 >0 x3+y3≥2 >0 ∴(x+y)(x2+y2)(x3+y3)≥2 ·2 ·2 =8x3y3 即(x+y)(x2+y2)(x3+y3)≥8x3y3. 3.随堂练习 1.已知a、b、c都是正数,求证 (a+b)(b+c)(c+a)≥8abc 分析:对于此类题目,选择定理: (a>0,b>0)灵活变形,可求得结果。 解:∵a,b,c都是正数 ∴a+b≥2 >0 b+c≥2 >0 c+a≥2 >0基本不等式教学课件【第三篇】
2020高中数学基本不等式教学教案【第四篇】
2020高中数学基本不等式教学教案【第五篇】