二元一次方程组教学教案【精选5篇】
【导言】此例“二元一次方程组教学教案【精选5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
元一次方程教案【第一篇】
二元一次方程
§ 二元一次方程
教学目标
知识目标
了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
能力目标
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
情感目标
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
重点
二元一次方程组的含义
难点
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
教学过程
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的。驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次
练习(投影)
下列方程有哪些是二元一次方程
+2y=1 xy+x=1 3x-=5 x2-2=3x
xy=1 2x(y+1)=c 2x-y=1 x+y=0
二、议一议、
师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?
师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成
x-y=2
x+1=2(y-1)
像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
如: 2x+3y=3 5x+3y=8
x-3y=0 x+y=8
三、做一做、
1、 x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?
2、 X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?
你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?
x=6,y=2是方程x+y=8的一个解,记作 x=6 同样, x=5
y=2 y=3
也是方程x+y=8的一个解,同时 x=5 又是方程5x+3y=34的一个解,
y=3
四、随堂练习(P103)
五、小结:
1、 含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。
2、 二元一次方程的解是一个互相关联的两个数值,它有无数个解。
3、 含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。
六、教后感:
七、自备部分
元一次方程与一次函数【第二篇】
相对前面两课内容来说,这一课的内容较为容易理解,再加上有前面两课的基础,学生应该好学习些。因此,这一课我在以下两个方面要求学生做好,图形解方程组的画图规范,利用图形进一步理解前一课的内容:“当x为何值时,y1<y2,y1=y2,y1>y2的题目类型”。
在课堂上,学生能够结合例题,总结出利用函数的图象解二元一次方程组的解题步骤:变形、画图、标交点、得结论。利用足够充分的时间让学生画图象解方程组,学生标交点的工作做得还不是很好,为此,提出了怎样才确保是实实在在可以看出是由图象得到交点坐标,得到方程组的解的,学生讨论的结果还是让我们满意的,不但由交点画垂线,在数轴上标出交的横坐标和纵坐标,而且把交点坐标在图上写出来,做到双保险。
利用函数的图象复习了上一课的学习难点,学生理解的人数更多了,在利用函数的增减性认识和理解,确实效果会更好些,需要注意的是利用函数的增减性理解须从交点出发向左或者向右变化来理解。
要动员学生议论或争论起来,这才是最有效的手段,个别辅导时,有同学在我的办公桌前进行争执,我看到了学生因相互的讨论而掌握,学生自己能够真正动起来,这是最好的,我希望学生是学习的主人,课堂上要努力让他们成为课堂的主人。
解二元一次方程组教案【第三篇】
教学目标:
1.会用加减消元法解二元一次方程组。
2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。
3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。
教学重点:
加减消元法的理解与掌握
教学难点:
加减消元法的灵活运用
教学方法:
引导探索法,学生讨论交流
教学过程:
一、情境创设
买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?
设苹果汁、橙汁单价为x元,y元。
我们可以列出方程3x+2y=23
5x+2y=33
问:如何解这个方程组?
二、探索活动
活动一:
1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?
2、这些方法与代入消元法有何异同?
3、这个方程组有何特点?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解这个方程得:y=4
把y=4代入③式
则
所以原方程组的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解这个方程得:x=5
把x=5代入①式,
3×5+2y=23
解这个方程得y=4
所以原方程组的解是x=5
y=4
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法。
三、例题教学:
例1.解方程组x+2y=1①
3x-2y=5②
解:①+②得,4x=6
将代入①,得
解这个方程得:
所以原方程组的解是
巩固练习(一):练一练1.(1)
例2.解方程组5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解这个方程得x=2
将x=2代入①,得
5×2-2y=4
解这个方程得:y=3
所以原方程组的解是x=2
y=3
巩固练习(二):练一练1.(2)(3)(4)2.
四、思维拓展:
解方程组:
五、小结:
1、掌握加减消元法解二元一次方程组
2、灵活选用代入消元法和加减消元法解二元一次方程组
元一次方程教案【第四篇】
一元二次方程组的解法
------第六课时
教学目的
1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。
2.通过应用题的教学使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性,体会列方程组往往比列一元一次方程容易。
3.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力。
重点、难点、关键
1、重、难点:根据题意,列出二元一次方程组。
2、关键:正确地找出应用题中的两个等量关系,并把它们列成方程。
教学过程
一、复习
我们已学习了列一元一次方程解决实际问题,大家回忆列方程解应用题的步骤,其中关键步骤是什么?
[审题;设未知数;列方程;解方程;检验并作答。关键是审题,寻找 出等量关系]
在本节开头我们已借助列二元一次方程组解决了有2个未知数的实际问题。大家已初步体会到:对两个未知数的应用题列一次方程组往往比列一元一次方程要容易一些。
二、新授
例l:某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为20xx元,那么该公司出售这些加工后的蔬菜共可获利多少元?
分析:解决这个问题的关键是先解答前一个问题,即先求出安排精加和粗加工的'天数,如果我们用列方程组的办法来解答。
可设应安排x天精加工,y加粗加工,那么要找出能反映整个题意的两个等量关系。引导学生寻找等量关系。
(1)精加工天数与粗加工天数的和等于15天。
(2)精加工蔬菜的吨数与粗加工蔬菜的吨数和为140吨。
指导学生列出方程。对于有困难的学生也可以列表帮助分析。
例2:有大小两种货车,2辆大车与3辆小车一次可以运货吨,5辆大车与6辆小车一次可以运货35吨。
求:3辆大车与5辆小车一次可以运货多少吨?
分析:要解决这个问题的关键是求每辆大车和每辆小车一次可运货多少吨?
如果设一辆大车每次可以运货x吨,一辆小车每次可以运货y吨,那么能反映本题意的两个等量头条是什么?
指导学生分析出等量关系。
(1) 2辆大车一次运货+3辆小车一次运货=15. 5
(2) 5辆大车一次运货+6辆小车一次运货=35
根据题意,列出方程,并解答。教师指导。
三、巩固练习
教科书第34页练习l、2、3。
第3题:首先让学生明白什么叫充分利用这船的载重量与容量,让学生找出两个等量关系。
四、小结
列二元一次方程组解应用题的步骤。
1.审题,弄清题目中的数量关系,找出未知数,用x、y表示所要求的两个未知数。
2.找到能表示应用题全部含义的两个等量关系。
3.根据两个等量关系,列出方程组。
4.解方程组。
5.检验作答案。
五、作业
1.教科书第35页,习题第2、3、4题。
二元一次方程【第五篇】
数学七年级下册《二元一次方程》数学教案
一、教学目标:
1、认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二、教学重难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学过程
(一)创设情景,引入课题
1、本班共有40人,请问能确定男女生各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2、男生比女生多了2人。设男生x人,女生y人、方程如何表示? x,y的值是多少?
3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)
(二)探究新知,练习巩固
1、二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解、]
(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)
2、二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
方程x+y=0的解,方程2x+3y=2的解,方程组的解。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知是方程组的解,求a,b的值。
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组的解、
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试、
(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
3、例 已知方程3X+2Y=10
⑴当X=2时,求所对应的Y 的值;
⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;
⑶用含X的`代数式表示Y;
⑷用含Y 的代数式表示X;
⑸当X=-2,0 时,所对应的Y值是多少;
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)
(四)课堂小结,布置作业
1、这节课学哪些知识和方法?
2、你还有什么问题或想法需要和大家交流?
3、教材P82
教学设计说明:
1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3、本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。