首页 > 学习资料 > 教案大全 >

数学教案-代数式的值【精编5篇】

网友发表时间 90840

发表时间

【导言】此例“数学教案-代数式的值【精编5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《代数式》教案【第一篇】

教学

目标1.让学生领会代数式值的概念;

2.了解求代数式值的解题过程及格式

3.初步领悟代数式的值随字母的取值变化而变化的情况

教学

重点培养学生的探索精神和探索能力。教学

难点通过学习使学生了解求代数式的值在日常生活中的应用;

教学

方法启发式教学

教学

用具

教学过程集体备课稿个案补充

新课引入

2001年7月13日,莫斯科时间17:08国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权。此时此刻举国欢腾,激情飞扬(多媒体展示当时的欢庆场面)。多媒体展示钟表:北京时间莫斯科时间

提出问题:你能根据图示得出北京时间和莫斯科时间的时差为多少?

如果用表示莫斯科时间,那么同一时刻的北京时间是多少?

学生回答:+5

进一步提出:国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权的北京时间是多少?

学生回答:+5=17+5=22时,即北京时间为22:08。

一、新课过程

代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值;例如22是代数式+5在=17时的值。

做一做:右图表示同一时刻的东京时间与北京时间:东京时间北京时间

⑴、你能根据右图知道北京与东京的时差吗?

⑵、设东京时间为,怎样用关于东京时间的代数式表示同一时刻的北京时间。

⑶、2002年世界杯足球赛于6月30日在日本横滨举行,开幕式开始的东京时间为20:00问开幕式开始的北京时间是几时?

二、课内练习

1、当分别取下列值时,求代数式的值:⑴⑵

2、当时,求下列代数式的值:⑴⑵

3、当时,。

三、典例分析

例1当n分别取下列值时,求代数式n(n-1)/2的值:

(1)n=-1(2)n=4(3)n=

解(1)当n=-1时,n(n-1)/2=(-1)X(-1-1)/2=1

(2)当n=4时,n(n-1)/2=4X(4-1)/2=6

(3)当n=时,n(n-1)/2=()/2=-

注意:负数代入求值时要括号,分数的乘方也要添上括号。

四、课堂练习1

1、当x分别取下列值时,求代数式20(1+x%)的值:

(1)x=40(2)x=25

2、当x=-2,y=-1/3时,求下列代数式的值:

(1)3y-x(2)|3y+x|

3、当x分别取下列值时,求代数式4-3x的值:

(1)x=1(2)x4/3(3)x=-5/6

4、当a=3,b=-2/3时,求下列代数式的值:

(1)2ab(2)a2+2ab+b2

五、典例分析

例2

小结、布置作业

《代数式》教案【第二篇】

摘要

教案是教师对教学内容,教学步骤,教学方法等进行具体的安排和设计的一种实用性教学文书,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。在此小编为您整理了数学代数式值备课教案,希望能给教师教学提供参考。

教学目标

1.让学生领会代数式值的概念;

2.了解求代数式值的解题过程及格式

3.初步领悟代数式的值随字母的取值变化而变化的情况

教学重点

培养学生的探索精神和探索能力。

教学难点

通过学习使学生了解求代数式的值在日常生活中的应用;

教学方法

启发式教学

教学用具

教学过程

集体备课稿 个案补充

新课引入

20××年7月13日,莫斯科时间17:08国际奥委会主席萨马兰奇宣布北京获得20××年第29届夏季奥运会的主办权。此时此刻举国欢腾,激情飞扬(多媒体展示当时的欢庆场面)。多媒体展示钟表: 北京时间 莫斯科时间

提出问题:你能根据图示得出北京时间和莫斯科时间的时差为多少?

如果用 表示莫斯科时间,那么同一时刻的北京时间是多少?

学生回答: +5

进一步 提出:国际奥委会主席萨马兰奇宣布北京获 得20××年第29届夏季奥运会的主办权的北京时间是多少?

学生回答: +5=17 +5=22 时,即北京时间为22:08 。

一、 新课过程

代数式的值:一般地,用数值代替代数式 里的字母,计算后所得的结果叫做代数式的值;例如22 是代数式 +5在 =17 时的值。

做一做:右图表示同一时刻的东京时间与北京时间 : 东京时间 北京时间

⑴、你能根据右图知道北京与东京的时差吗?

⑵、设东京时间为 ,怎样用关于东京时间 的代数式 表示同一时刻的北京时间。

⑶、2002年世界杯足球赛于6月30日 在日本横滨举行 ,开幕式开始的东京时间为20:00问开幕式开始的北京 时间是几时?

二、 课内练习

1、当分别取下列值时,求代数式 的值:⑴ ⑵

2、当时,求下列代数式的值:⑴ ⑵

3、当时。

三、典例分析

例 1 当n分别取下列值时,求代数式n(n-1)/2的值:

(1) n=-1 (2)n=4 (3)n=

解 (1)当n=-1时,n(n-1)/2=(-1)X(-1-1)/2=1

(2) 当n=4时,n(n-1)/2=4X(4-1)/2=6

(3) 当n=时,n(n-1)/2=()/2=-

注意:负数代入求值时要括号,分数的乘方也要添上括号。

四、课堂练习

1、 当x分别取下列值时,求代数式20(1+x%)的值:

(1) x=40 (2)x=25

2、 当x=-2,y=-1/3时,求下列代数式的值:

(1)3y-x (2)|3y+x|

3、 当x分别取下列值时,求代数式4-3x的值:

(1) x=1 (2)x4/3 (3)x=-5/6

4、 当a=3,b=-2/3时,求下列代数式的值:

(1)2ab (2)a2+2ab+b2

五、典例分析

例 2

小结、布置作业

《代数式》教案【第三篇】

学习目标

1、了解代数式的值的意义,能准确地求出代数式的值;

2、通过代入法求值培养学生良好的学习习惯和品质,提高运算能力与创新设计能力;

3、通过字母取不同的值的变化来认识世界发展变化及全面的观点。

学习重点能准确地求出代数式的值。

学习难点能准确地求出代数式的值。

学习过程

『问题情境、研讨』

情境一:某公园依地势摆若干个由大小相同的正方形构成的花坛,并在各正方形花坛的顶点与各边的中点布放盆花以营造节日气氛,

(1)填写下表

图形编号 (1) (2) (3) (4)

盆花数

(2)若要求第100个图案要用多少盆花,怎样去解答?

情境二:

(1)看图,如果小朋友的年龄为x岁,那么工人的年龄怎么表示?

(2)当x=9时,工人过了40岁了吗?

(3)想一想:当x=6时工人的年龄呢?

结论:根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系,计算出的结果,就叫做这个代数式的值。

『例题讲评』 P70/例1、 P/71议一议

『学生练习』 P71/练一练:1、2

补充:(1)当x=1时,求代数式4 -x+x2的值。

(2)当a=2,b=-5时,求下列代数式的值:①(a+b)(a-b) ②a2-b2.

(3)当x+y=-2,xy=-4时,求代数式 - 的值。

代数式的值(1)随堂练习

评价_______________

1.当x=-1时,代数式|5x+2|和1-3x的值分别为,则M、N之间的关系为( )

2.当a=-2时,代数式-a2的值是( )

B.-2 C.-4

3.已知a-b=-2,则代数式3(a-b)2-b+a的值为( )

C.-10 D.-12

4.当a=2,b=-3,c=-4时,代数式b2-4ac的值为___________.

5.如果a+b=-3,ab=-4,代数式的 值为__________.

6.已知:x=-1,y=2,则(x-y)2-x3+x2y2 = .

7.已知:a= ,b= ,则a2-2ab+b2= .

8.当m-n=5,mn= -2时,则代数式(n-m)2-4mn= .

9.已知:x2+xy=1,xy-y2=-4,则x2+2xy-y2= .

10.若m2+3n-1的值为5,则代数式2m2+6n+1的值为 .

11.当a=-2,b=3时,求下列代数式的值:

⑴ 3(a-b) ⑵ 3a-3b ⑶ ( )2 ⑷

⑸ (a-b)2 ⑹ a2-2ab+b2 ⑺ (a+1)(b+1) ⑻ ab+a+b+1

12.已知x,y互为相反数,a,b互为倒数,t的绝对值为2,求代数式(x+y)20xx+(-ab)20xx+t2的值。

13.已知 =2,求代数式 的值。

《代数式》教案【第四篇】

一、教学目标

1.了解用字母表示数的意义,了解用字母表示数是代数的一个特点,是数学的一大进步。

2.了解代数式的概念,能说出一个代数式所表示的数量关系。

3.通过用字母表示数,学生学会抽象概括的思维方法。

4.通过实例,学生从中领悟到数学来源于实践,又反过来作用于实践的辩证原理。

5.通过用字母表示数,反映出数学中从特殊到一般的辩证关系,从而使学生受到初步的辩证观点的教育。

二、教学重点

难点用字母表示数的思想

三.教学工具

小黑板三角尺

四.教学方法

探究法互动法

五、教学步骤

(一)创设情境,复习导入

1.设疑引入

师:中学数学课是从代数开始的,在代数课上都学习些什么呢?初中代数和小学数学有什么关系呢?请同学们看小黑板

师:图中有几种交通工具?

学生活动:观察图形,从中找出答案.(两种:飞机、火车)

教法说明图片展示联系实际易激发初一学生兴趣,使学生养成自己发现问题、解决问题的创造性思维习惯.

师:这列火车和飞机行驶的路程与时间如下表:

时间(时)

学生活动:先独立思考,再与同伴交流,互相讨论后一一回答问题.

教师活动:巡视查看,叫学生回答并正确评价,然后师生共同归纳:

(1)加法交换律;乘法交换律

(2)交换两个加(或因)数,它们的和(或积)不变

(3)a + b = b + a;ab = ba

教法说明由学生熟知的例子引出字母表示数学生易接受.由特殊到一般,也体现用字母表示数简明、普遍的优越性.注意①三个问题不要连续给出,要让学生个个击破,让学生有成功感,③向学生指明用字母表示数体现了数学中的简洁美,对称美,数学美.

(二)尝试反馈,巩固练习

师:你还学过哪些用字母表示数的运算律?能写出来吗?

学生活动:一个学生板演,其他学生写在练习本上(加法结合律、乘法结合律、分配律)

师:巡视检查,共同与学生评价板演.

教法说明通过亲自动手尝试,进一步理解用字母表示数的实际意义.

小结:(1)这些运算律中的字母可表示任何一个数;(2)用字母表示数能简明地揭示一般规律.

(三)变式训练,培养能力

师:除运算律能用字母表示外,还有许多同学们熟悉的实例,请看:(出示投影2)

1.如果用s表示路程(单位:km),t表示时间(单位:h),v表示速度阵位:km/h),那么有v=__________.

2.一个正方形的边长为a cm(厘米),这个正方形的周长是多少?面积是多少?用L表示周长(单位:cm),则L=_________,用S表示面积(单位:cm2),则S=_____________。

学生活动:在练习本上写出结果,两名学生板演,

教师活动:(1)常用的长度单位在小学大多用汉字表示,初中开始用字母表示:米(m),厘米(cm),毫米(mm),千米(km),相应的面积、体积单位则是平方米(m2),立方米(m3)等.(2)单位不能遗漏。(3)尽可能化成最简形式

教法说明通过练习使学生亲自体会用字母表示数的广泛性,为今后正确使用奠定基础.

(四)归纳小结

师:从以上各例可以看出,用字母表示数,可以把数或数量关系简明地表示出来,且具有一般性,因此,在公式与方程中都用字母表示数,这给运算带来了很大方便.今天的探索就到这里,刚才同学们表现都很出色,希望再接再励!

(五)课堂练习,巩固提高

1.一个三角形的底边为a m,这边上的高为h m,则这个三角形的面积是多少?用S表示面积(单位:m2),则S=_______;它和什么图形的面积公式相似?

2.用字母表示(一个或几个)

(1)有这样一个游戏:把你的出生年份乘以10000倍,再把你的出生月份乘以100倍,最后把你的出生日份乘以3,全部相加后,所得的和中就能够计算出你的出生日期。不信试一试;

(2)2 x 2 = 2 + 2;3 +—— = 3 x ——;4 x —— = 4 + ——;5 x—— =5 +——,......(3)3x3—1x1=8,5x5—3x3=16,9x9—7x7=32,15x15—13x13=56,......3.—— + —— =——,—— + —— =——,—— + —— = ——,—— + —— = ——,......

代数式【第五篇】

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解的概念,使学生能说出一个所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性。

(2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是。如:2, 都是。

(3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号。如 , ,等都是,而 , , , 等都不是。

3.教学难点分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写的注意事项:

(1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面。如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号。

(2)中有除法运算时,一般按照分数的写法来写。如: 应写作

(3)含有加减运算的需注明单位时,一定要把整个式子括起来。

5.对本节例题的分析:

例1是用表示几个比较简单的数量关系,这些小学都学过。比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍。

例2是说出一些比较简单的的意义。因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已。

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个所表示的数量关系。

第 1 2 页

相关推荐

热门文档