首页 > 学习资料 > 高中教案 >

二元一次方程与一次函数优推12篇

网友发表时间 3896166

二元一次方程表示平面上的直线关系,一次函数则描述自变量与因变量之间的线性关系,二者密切相关。下面是勤劳的小编为大家分享的二元一次方程与一次函数范例,欢迎借鉴参考。

元一次方程与一次函数 篇1

教学目标

1.知识与能力目标

(1)二元一次方程和一次函数的关系。

(2)二元一次方程组的图象解法。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

教学难点

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法

学生操作——————自主探索的方法

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程

一。故事引入

迪卡儿的故事——————蜘蛛给予的启示

十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

二。尝试探疑

1、Y=x+1

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?

以方程x—y=—1的解为坐标的点在不在函数y=x+1的图象上?方程x—y=—1与函数y=x+1有何关系?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程x—y=—1。

然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x—2

学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组

y=x+1的解。

Y=4x—2

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

三。方程与函数关系的应用

解方程组x—2y=—2

2x—y=2

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1。把两个方程都化成函数表达式的形式。

2。画出两个函数的图象。

3。画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是x=2有的同学的解是x=2。1 y=2。1

y=1。9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。

[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四。引申

方程组x+y=2

x+y=5解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五。课后小结

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六。作业

1。用作图象法解方程组2x+y=4

2x—3y=12

2。如图,直线L、L相交于点A,试求出A点坐标。

元一次方程教学设计 篇2

一、教学目标

(一)教学知识点

1、代入消元法解二元一次方程组。

2、解二元一次方程组时的消元思想,化未知为已知的化归思想。

(二)能力训练要求

1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。

(三)情感与价值观要求

1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。

2、培养学生合作交流,自主探索的良好习惯。

二、教学重点

1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。

三、教学难点

1、消元的思想。

2、化未知为已知的化归思想。

四、教学方法

启发自主探索相结合。

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。

五、教具准备

投影片两张:

第一张:例题(记作7。2 A);

第二张:问题串(记作7。2 B)。

六、教学过程

Ⅰ、提出疑问,引入新课

[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组 成人和儿童到底去了多少人呢?

[生]在上一节课的做一做中,我们通过检验 是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出 是方程组 的解。所以成人和儿童分别去了5个人和3个人。

[师]但是,这个解是试出来的。我们知道二元一次方程的解有无数个。难道我们每个方程组的解都去这样试?

[生]太麻烦啦。

[生]不可能。

[师]这就需要我们学习二元一次方程组的解法。

Ⅱ、讲授新课

[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?

[生]解:设成人去了x个,儿童去了(8—x)个,根据题意,得:

5x+3(8—x)=34

解得x=5

将x=5代入8—x=8—5=3

答:成人去了5个,儿童去了3个。

[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?

[生]列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个。列一元一次方程设成人去了x个,儿童去了(8—x)个。y应该等于(8—x)。而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8—x。

[生]我还发现一元一次方程中5x+3(8—x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的y用8—x代替就转化成了一元一次方程。

[师]太好了。我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法即将新知识转化为旧知识便可。如何转化呢?

[生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的。所以将 中的①变形,得y=8—x ③我们把y=8—x代入方程②,即将②中的y用8—x代替,这样就有5x+3(8—x)=34。二元化成一元。

元一次方程公开课教案 篇3

教学目标:

1.会用加减消元法解二元一次方程组。

2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。

3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。

教学重点:

加减消元法的理解与掌握

教学难点:

加减消元法的灵活运用

教学方法:

引导探索法,学生讨论交流

教学过程:

一、情境创设

买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

设苹果汁、橙汁单价为x元,y元。

我们可以列出方程3x+2y=23

5x+2y=33

问:如何解这个方程组?

二、探索活动

活动一:

1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

2、这些方法与代入消元法有何异同?

3、这个方程组有何特点?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解这个方程得:y=4

把y=4代入③式

所以原方程组的。解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解这个方程得:x=5

把x=5代入①式,

3×5+2y=23

解这个方程得y=4

所以原方程组的解是x=5

y=4

把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法。

三、例题教学:

例1.解方程组x+2y=1①

3x-2y=5②

解:①+②得,4x=6

将代入①,得

解这个方程得:

所以原方程组的解是

例2.解方程组5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解这个方程得x=2

将x=2代入①,得

5×2-2y=4

解这个方程得:y=3

所以原方程组的解是x=2

y=3

巩固练习(二):练一练1.(2)(3)(4)2

四、思维拓展

解方程组:

五、小结:

1、掌握加减消元法解二元一次方程组

2、灵活选用代入消元法和加减消元法解二元一次方程组

六、作业

习题(3)(4)2

元一次方程教学设计 篇4

一、内容和内容解析

1、内容

代入消元法解二元一次方程组

2、内容解析

二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等。

解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。。

二、目标和目标解析

1、教学目标

(1)会用代入消元法解一些简单的二元一次方程组

(2)理解解二元一次方程组的思路是消元,体会化归思想

2、教学目标解析

(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

(2)要让学生经历探究的过程。体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想

三、教学问题诊断分析

1、学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

2、解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

四、教学过程设计

1、创设情境,提出问题

问题1

篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

x=6,则胜6场,负4场

教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

师生活动:学生回答:能设胜x场,负y场。根据题意,得

我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4。显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

这节课我们就来探究如何解二元一次方程组。

设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫。

问题2 对比方程和方程组,你能发现它们之间的关系吗?

师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

师生活动:根据上面分析,你们会解这个方程组了吗?

学生回答:会。

由①,得y=10-x ③

把③代入②,得2x+(10-x)=16 x=6

设计意图:共同探究,体会消元的过程。

问题3 教师追问:你能把③代入①吗?试一试?

师生活动:学生回答:不能,通过尝试,x抵消了。

设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点。

教师追问:你能求y的值吗?

师生活动:学生回答:把x=6代入③得y=4

教师追问:还能代入别的方程吗?

学生回答:能,但是没有代入③简便

教师追问:你能写出这个方程组的解,并给出问题的答案吗?

学生回答:x=6,y=4,这个队胜6场,负4场

设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

师生活动:先让学生独立思考,再追问在这种解法中,哪一步最关键?为什么?

学生回答:代入这一步

教师总结:这种方法叫代入消元法。

教师追问:你能先消x吗?

学生纷纷动手完成。

设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫。

2、 应用新知,拓展思维

例 用代入法解二元一次方程组

师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法。

3、加深认识,巩固提高

练习 用代入法解二元一次方程组

设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组。

4、归纳总结,知识升华

师生活动,共同回顾本节课的学习过程,并回答以下问题

1、 代入消元法解二元一次方程组有哪些步骤?

2、 解二元一次方程组的基本思路是什么?

3、在探究解法的过程中用到了哪些思想方法?

4、你还有哪些收获?

设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力。

5、 布置作业

教科书第93页第2题

五、目标检测设计

用代入法解下列二元一次方程组

设计意图:考查学生对代入法解二元一次方程组的掌握情况。

元一次方程与一次函数 篇5

一、学情分析:

学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验。

二、学习目标:

本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力。因此确定本节课的教学目标为:

1.初步理解二元一次方程和一次函数两种数学模型之间的关系;

2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系。

教学重点

二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;

教学难点

通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识。

四、教法学法

1.教法学法

启发引导与自主探索相结合。

2.课前准备

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

五、教学过程

第一环节:探究二元一次方程和一次函数两种数学模型之间的关系

1.某水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水。

(1)请找出自变量和因变量

(2)你能列出X,Y的关系式吗

(3)X,Y的取值范围是什么

(4)在平面直角坐标系中画出这个函数的图形。(注意XY的取值范围).

2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?

(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?

(3).在一次函数y=x5的图像上任取一点,它的坐标适合方程x+y=5吗?

(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=x5的图像相同吗?

x+y=5与y=x5表示的关系相同

一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线。

目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=x5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。

第二环节自主探索方程组与一次函数两种数学模型之间的关系

探究方程与函数的相互转化

1.两个一次函数图象的交点坐标是相应的二元

一次方程组的解

(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?

(2)两个函数的交点坐标适合哪个方程?

xy5(3).解方程组验证一下你的发现。 2xy1

练习:随堂练习1 。巩固由一次函数的交点坐标找相应的二元一次方程组的解。

2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。

xy2(1)解

2xy5(2)以方程x+y=2

(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?

(5目的:通过自主探索,使学生初步体会“数”(二元一次方程组的解)与“形”(两条直线)两种模型之间的对应关系,

由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力。

练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。

第三环节模型应用

1.某公司要印制产品宣传材料。

1500元制版费。甲印刷厂:每份材料收1元印制费,另收乙印刷厂:每份材料收元印制费,不收制版费。若公司要印制x份宣传材料,y甲表示甲印刷厂的费用,y乙表示乙

印刷厂的费用。

(1)请分别表示出两个印刷厂费用与X的关系式。

(2)在同一直角坐标系中画出函数的图象。

(3)如何根据印刷材料的份数选择印刷厂比较合算?

第四环节模型特例

想一想

内容:在同一直角坐标系内,一次函数y = x + 1和y = x - 2的图象(教材xy1124页图5-2)有怎样的位置关系?方程组解的情况如何?你发现了什xy2

么?

二元一次方程的解和相应的两条直线的关系2.

(1)观察发现直线平行无交点;

(2)小组研究计算发现方程组无解;

(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;

(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。

目的:进一步揭示“数”与“形”转化关系。通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯。

进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。进一步挖掘出两直线平行与k的关系。

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。

第五环节课堂小结

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

以二元一次方程的解为坐标的点都在相应的函数图像上;

一次函数图像上的点的坐标都适合相应的二元一次方程。

2.方程组和对应的两条直线的关系:

方程组的解是对应的两条直线的交点坐标;

两条直线的交点坐标是对应的方程组的解;

第六环节作业布置

习题

元一次方程 篇6

教学目标

1、认识二元一次方程和二元一次方程组。

2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。

重点、难点

重点:理解二元一次方程组的解的意义

难点:求二元一次方程的正整数解

教学过程

一、复习导入

什么是一元一次方程?“元”指什么?“次”指什么?

什么是方程的解?

设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、观看视频

观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

视频内容

设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知

根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

把两个二元一次方程合在一起,就组成了一个二元一次方程组。

提问:对比两个方程,你能发现它们之间的关系吗?

师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组。

探究二元一次方程组的解:

满足x+y=10的值有哪些?请填入表中:

使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。

满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:

不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解。

思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?

带着问题让学生观看洋葱数学视频二元一次方程组的解

视频内容

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

四、例题讲解

例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。

例2、暴风雨即将来临,一群蚂蚁正忙着搬家。其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有1 00只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?

例3、

学生思考,试着解答,最后共同宣布答案。

设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。

五、随堂练习

1.下列方程中,是二元一次方程的是( )

-2y=4z +9=0

C.+4y=6 =

2.下列方程组中,是二元一次方程组的是( )

A. B.

C. D.

3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为关于x,y的二元一次方程,则k值为( )

A.-2 或-2 D.以上答案都不对

4.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( )

A、 B、 C、 D、

5.二元一次方程组的解为( )

A. B. C. D.

6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )

种种种种

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识

六、拓展延伸

1.有大小两种货车,2辆大货车与3辆小货车一次可以运货吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是( )

A. B.

C. D.

2.甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试计算a2 016+(-b)2 017.

设计意图:这个环节是巩固本课知识点,通过设置练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的。喜悦。

七、课堂小结

以提问进行:

(1)、二元一次方程(组)的特征是什么?

(2)、二元一次方程组的解要满足什么条件?

设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。同时为以后的学习作知识储备。

八、教学反思

1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。

2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。

3.分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。

元一次方程公开课教案 篇7

教学建议

一、重点、难点分析

本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

二、知识结构

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

一、素质教育目标

(一)知识教学点

1.掌握用代入法解二元一次方程组的步骤.

2.熟练运用代入法解简单的二元一次方程组.

(二)能力训练点

1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

2.训练学生的'运算技巧,养成检验的习惯.

(三)德育渗透点

消元,化未知为已知的数学思想.

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

二、学法引导

1.教学方法:引导发现法、练习法,尝试指导法.

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.

三、重点、难点、疑点及解决办法

(-)重点

使学生会用代入法解二元一次方程组.

(二)难点

灵活运用代入法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

(四)解决办法

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

七、教学步骤

(-)明确目标

本节课我们将学习用代入法求二元一次方程组的解.

(二)整体感知

从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

(三)教学步骤

1.创设情境,复习导入

(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

(2)选择题:

二元一次方程组 的解是

A. B. C. D.

第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

这样导入,可以激发学生的求知欲.

2.探索新知,讲授新课

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

设买了香蕉 千克,那么苹果买了 千克,根据题意,得

设买了香蕉 千克,买了苹果 千克,得

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

解:由①得: ③

把③代入②,得:

把 代入③,得:

解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

例1 解方程组

(1)观察上面的方程组,应该如何消元?(把①代入②)

(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

(3)求出 后代入哪个方程中求 比较简单?(①)

学生活动:依次回答问题后,教师板书

解:把①代入②,得

把 代入①,得

如何检验得到的结果是否正确?

学生活动:口答检验.

教师:要把所得结果分别代入原方程组的每一个方程中.

给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

例2 解方程组

要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

学生活动:尝试完成例2.

教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

解:由②,得 ③

把③代入①,得

把 代入③,得

检验后,师生共同讨论:

(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

(2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

教师板书:

(1)变形( )

(2)代入消元( )

(3)解一元一次方程得( )

(4)把 代入 求解

练习:P13 1.(1)(2);P14 2.(1)(2).

3.变式训练,培养能力

①由 可以得到用 表示 .

②在 中,当 时, ;当 时, ,则 ; .

③选择:若 是方程组 的解,则( )

A. B. C. D.

(四)总结、扩展

1.解二元一次方程组的思想:

2.用代入法解二元一次方程组的步骤.

3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.

通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

八、布置作业

(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

(二)选做题:P15 B组1.

元一次方程教学设计 篇8

教学目标:

1、会用加减消元法解二元一次方程组。

2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。

3、了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。

教学重点:

加减消元法的理解与掌握

教学难点:

加减消元法的灵活运用

教学方法:

引导探索法,学生讨论交流

教学过程:

一、情境创设

买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

设苹果汁、橙汁单价为x元,y元。

我们可以列出方程3x+2y=23

5x+2y=33

问:如何解这个方程组?

二、探索活动

活动一:

1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

2、这些方法与代入消元法有何异同?

3、这个方程组有何特点?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解这个方程得:y=4

把y=4代入③式

所以原方程组的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解这个方程得:x=5

把x=5代入①式,

3×5+2y=23

解这个方程得y=4

所以原方程组的解是x=5

y=4

把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法。

三、例题教学:

例1.解方程组x+2y=1①

3x-2y=5②

解:①+②得,4x=6

将代入①,得

解这个方程得:

所以原方程组的解是

巩固练习(一):练一练1

。(1)

例2.解方程组5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解这个方程得x=2

将x=2代入①,得

5×2-2y=4

解这个方程得:y=3

所以原方程组的解是x=2

y=3

四、思维拓展:

解方程组:

五、小结:

1、掌握加减消元法解二元一次方程组

2、灵活选用代入消元法和加减消元法解二元一次方程组

元一次方程 篇9

§

【教学目标 】

【知识目标】了解、组及其解等有关概念,并会判断一组数是不是某个组的解。

【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

【重点】组的含义

【难点】判断一组数是不是某个组的解,培养学生良好的数学应用意识。

【教学过程 】

一、引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)

师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?   (含有两个未知数,并且所含未知数项的次数是1)

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做

注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次

练习:(投影)

下列方程有哪些是

+2y=1         xy+x=1     3x- =5    x2-2=3x

xy=1    2x(y+1)=c    2x-y=1       x+y=0

二、议一议、

师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?

师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成

x-y=2

x+1=2(y-1)

像这样含有两个未知数的两个一次方程所组成的一组方程,叫做组。

如:   2x+3y=3            5x+3y=8

x-3y=0              x+y=8

三、做一做、

1、  x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?

2、  X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?

你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?

适合一个的一组未知数的值,叫做这个的解

x=6,y=2是方程x+y=8的一个解,记作  x=6    同样,   x=5

y=2             y=3

也是方程x+y=8的一个解,同时   x=5      又是方程5x+3y=34的一个解,

y=3

各个方程的公共解,叫做组的解。

四、随堂练习、(P103)

五、小结:

1、  含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做。

2、  的解是一个互相关联的两个数值,它有无数个解。

3、  含有两个未知数的两个组成的一组方程,叫做组,它的解是两个方程的公共解,是一组确定的值。

六、教后感:

七、自备部分

元一次方程教学设计 篇10

教学目标

知识与技能

(1)初步理解二元一次方程和一次函数的关系;

(2)掌握二元一次方程组和对应的两条直线之间的关系;

(3)掌握二元一次方程组的图像解法。

过程与方法

(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。

情感与态度

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系。

教学难点

数形结合和数学转化的思想意识。

教学准备

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

教学过程

第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)

内容:1.方程x+y=5的解有多少个?是这个方程的解吗?

2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)

内容:

1、解方程组

2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

元一次方程与一次函数 篇11

北师大版八年级上第七章二元一次方程组第六节 202页----204页

《二元一次方程与一次函数》教学设计

鹿泉市上庄镇中学     张亚茹

教学目标 

1.知识与能力目标

(1)二元一次方程和一次函数的关系。

(2)二元一次方程组的图象解法。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

教学难点 

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法

学生操作------自主探索的方法

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程 

一。   故事引入

迪卡儿的故事------蜘蛛给予的启示

十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

二。   尝试探疑

1、Y=x+1

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?

以方程x-y=-1的解为坐标的点在不在函数y=x+1  的图象上?方程x-y=-1与函数y=x+1有何关系?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x-y=-1。

然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x-2   

学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x-2的交点坐标就是由两个函数表达式组成的方程组

y=x+1       的解。

Y=4x-2

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

三。   方程与函数关系的应用

解方程组  x-2y=-2

2x-y=2

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1.把两个方程都化成函数表达式的形式。

2.画出两个函数的图象。

3.画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是    x=2 有的同学的解是       x=                  y=

y=   有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。

[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四。   引申

方程组   x+y=2

x+y=5   解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五。   课后小结

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六。   作业

1.    用作图象法解方程组2x+y=4

2x-3y=12

2.如图,直线L、L相交于点 A,试求出A点坐标。

教学反思

这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。

北师大版八年级上第七章二元一次方程组第六节 202页----204页

《二元一次方程与一次函数》教学设计

鹿泉市上庄镇中学     张亚茹

教学目标 

1.知识与能力目标

(1)二元一次方程和一次函数的关系。

(2)二元一次方程组的图象解法。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

教学难点 

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法

学生操作------自主探索的方法

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程 

一。   故事引入

迪卡儿的故事------蜘蛛给予的启示

十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

二。   尝试探疑

1、Y=x+1

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?

以方程x-y=-1的解为坐标的点在不在函数y=x+1  的图象上?方程x-y=-1与函数y=x+1有何关系?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x-y=-1。

然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x-2   

学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x-2的交点坐标就是由两个函数表达式组成的方程组

y=x+1       的解。

Y=4x-2

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

三。   方程与函数关系的应用

解方程组  x-2y=-2

2x-y=2

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1.把两个方程都化成函数表达式的形式。

2.画出两个函数的图象。

3.画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是    x=2 有的同学的解是       x=                  y=

y=   有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。

[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四。   引申

方程组   x+y=2

x+y=5   解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五。   课后小结

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六。   作业

1.    用作图象法解方程组2x+y=4

2x-3y=12

2.如图,直线L、L相交于点 A,试求出A点坐标。

教学反思

这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。

元一次方程教学设计 篇12

学习目标:

1、 使学生初步理解二元一次方程与一次函数的关系

2、 能根据一次函数的图像求二元一次方程组的近似值

3、 能解二元一次方程组的方法求两条直线的交点坐标

学习重点:

1、 用作图像法求二元一次方程组的近似值

2、 用解二元一次方程组的方法求两条直线的交点坐标

学习难点:

1、 做图像时要标准、精确,近似值才接近

2、 解二元一次方程组时计算准确,方法适宜

学习方法:

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

自主学习部分:

问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。

(2)在直角坐标系中分别描出以上这些解为坐标的点,它们在一次函数y=5-x的图像上吗?

(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(4)以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=5-x的图像相同吗?

(5)由以上的探究过程,你发现了什么?

问题2.

(1)在同一个直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?如果有,写出交点坐标?

(2)一次函数y=5-x和y=2x-1的交点坐标与方程 组 的解有什么关系?你能说明理由吗?

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用 法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

1、 用做图像的方法解方程组

2、用解方程的方法求直线y=4-2x与直线y=2x-12交点

相关推荐

热门文档

18 3896166