鸡兔同笼教学反思(精选4篇)
【序言】由三一刀客最美丽的网友为您整理分享的“鸡兔同笼教学反思(精选4篇)”范文资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
《鸡兔同笼》教学反思【第一篇】
昨晚在家里与峰讨论,明天俞老师上“鸡图同笼”会怎样上呢?因为鸡兔同笼在五年级都已经学了,学生也会解决一些变式的题目,难道他会让学生解一些更难的题目,那么又会怎样来组织材料呢?是不是会解决各种方法之间的联系?。.。.带着很多的猜想走进了今天俞老师的课堂。(很高兴猜中了一点:解决各种方法之间的联系,但是万万没有想到俞老师会用这样的组织方式,从一至六年级学生的解题方法来贯穿整节课),俞老师那幽默风趣的语言、孩子们那精彩的表现赢来了台下听课老师的阵阵掌声。整节课下来,使我体会到了“站在讲台上我就是数学”这句话的真正含义!
一、导入
1、出示一个鸡兔同笼的简单题目(鸡兔头有7个,有脚22只,问鸡兔各有几只?)
t了解学情
2、一、二、三四、五六、七八年级的学生分别怎样来做这个题目。
学生独立尝试
3、s1:二年级用凑数的方法。五六年级用假设的方法。
s2:五六年级还可以用方程解。
4、t:三种方法了,一年级可以用什么方法?
s:用画的方法。
t:用一年级的方法画。(先鸡头再变成兔头)
t:七八年级是怎样解决的'呢?
s:1只鸡和1只兔为1组22除以6(用抬脚法)t:归入到三、年级
二、讨论各种方法的异
1、面对这种方法你有什么想法?
t:你认为这四中方法哪种方法最简单?
t:最难的是哪一种?
学生得出数据大的时候,画的方法很难。
为什么一年级会做更难的呢?
s:因为一二年级的做法思路简单。
t:各种方法的主要特征?
s:第一种方法的特征是画出来
s:第二种方法的特征是凑出来
s:第三种方法的特征是算出来
s:第四种方法的特征是解出来
三、分类
1、t:四种方法分成两类,你认为怎样分?
s1:一、二种为一类 三、四为一类
t:还有没有别的分类呢?
(在老师的一只手举起来了,两只手举起来了,三只手举起来了。.。在耐心的等待中,学生的思维又进入了积极的状态中)
s2:一、四为一种、二三为一种。
小组讨论。画的一类。
s3:一、三为一种,二四为一种。
一、三都是假设的。
二、四都是设鸡为1只,兔为7-1,同方程的解。
t:三种分类,还有吗?
s:一、二三为一种,四为一种,根据有没有*
s:其实怎么分都可以,他们都有共同点。
t:四种方法一样在哪里?
s:都是用假设的方法。(第五种)
四、优化分类
t:哪一种分类方法最有智慧?
s:一二为一类、三、四为一类,因为一二形象化、三四简单化。
三是一的简单化 二是四的形象化
一是三的形象化 四是二的简单化
t:三四是一二的升级版。
t:如果一个小朋友学不会,你怎么教他?
五、小结
面对这份材料,你有什么想法?
数学有共同点,简单带来复杂,复杂的带来简单。
生:数学是一步一步的演化而来的。
t:我们不学猴子摘了玉米扔玉米,摘了桃子扔桃子。.。从懵懵懂懂的一年级到六年级,学了不要扔。
《鸡兔同笼》教学反思【第二篇】
通过研读教材和教学用书,我知道鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。
这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”
“如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:
1、体现了解决问题策略的多样化与优化
鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。
2、注重了数学思想、数学文化的传承
“鸡兔同笼”是我国民间广为流传的数学趣题,教学中,我从该趣题引入,到解决该趣题,到感悟古人解决该类问题的方法,揭去了它令人生畏的奥数面纱,还其生动有趣的一面。通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。
3、形成了假设的数学思想
课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。
4、构建了该类问题的数学模型
在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。
《鸡兔同笼》教学反思【第三篇】
“鸡兔同笼”问题是用假设法解题的典型问题,对于有些学生比较难以理解,同时不同的学生喜欢的方法也可能有所不同,所以本设计强调让学生多角度地思考,尝试用不同的方法去解决“鸡兔同笼”问题,并且在解决问题中,让学生经历“猜测——列表——假设”的过程,培养学生的逻辑思维能力。这节课注重了以下几点:
一、注重通过生生互动和人境互动帮助理解解决问题的思路
“鸡兔同笼”问题属于一类较难理解的应用题,有些学生通过独立思考、探究并不一定能找出正确方法和答案,这就需要借助外在的帮助,学生与学生之间的互动让学生接受起来更容易、更方便,让会的孩子去帮助不会的孩子学会不但是一个知识的传输过程,也是一个思维碰撞、情感交流的过程,不会的孩子通过帮助不但学会了新知识,还学会了其他学生良好的思维习惯,增进了他们的友谊。人境互动在本节课中也起到了相当重要作用,比如说学生想象兔子变成鸡的场景、用手比划模仿鸡和兔、在脑海中形成印象、画图理解,让学生身临其境,体验、感受了鸡和兔的脚具体是怎么变化的,为什么会那样变化,为理解假设法打下了坚实基础。
二、注重数学思想的渗透和逻辑推理能力的培养。
本设计通过多维互动突出了用假设法解决“鸡兔同笼”问题,同时还渗透了化繁为简、猜测、尝试、列表法、数形结合等数学思想,给数学课堂带来了生机和活力,让学生感受到数学的无穷奥妙和变幻万千,同时通过对解题思路的逐步引导,让学生学会推理,学生思维能力得到了提升。
三、注重数学文化的传承。
“鸡兔同笼”问题是《孙子算经》中一道数学名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和《孙子算经》及其中关于鸡兔同笼问题的原题,用课件生动地呈现于课堂,极大地激发和调动了学生的探究兴趣,同时也传承和弘扬了经典的数学文化,让学生感受到中国古代数学的`先进,增强了民族自豪感。
经过几次的磨课和评讲,我也感受到自己在授课中的一些不足,比如说课堂应变能力需要提高,细节上的处理做的不够等等,这些都需要不断努力改进。在这几个星期的时间里,从开始到结束,都是师校长、贾书记 、张主任、唐主任和师父朱老师等领导和优秀教师在不断帮我修改、观课、评课、磨课,正是有了她们的悉心指导和帮助才有了我今天的进步,她们认真、细心、专注的态度让我由衷敬佩,这节课给我最大的收获就是端正态度,认真踏实、一丝不苟地去准备并上好每节课。
《鸡兔同笼》教学反思【第四篇】
本单元是课本中的第九单元——数学广角,趣味性非常强。本节课在开始我先问了同学们知道哪些科学家、数学家。同学们给出了:爱迪生、爱因斯坦、牛顿、诺贝尔、毕达哥拉斯。.。.。.只有一个同学说出了一个中国人的名字——刘徽(不过还把“徽”读错了)。由此可见对于中国古人的智慧了解甚少。告诉大家其实中国也有很多世界著名的科学家、数学家,要多了解中国古人们的智慧。
这节课首先从一个非常简单的“鸡兔同笼”问题入手,利用列举的。方式同学们都能够得出正确的结果。接着我又讲了课本第8页的最后一道题,31页最后一道题,都是利用图形表示数的题目,接着又复习了加法交换律如何用字母表示。有了这些铺垫之后,利用设未知数的方法,写了一个二元一次方程,带领同学们慢慢的来解题。最后我问有多少人听明白了,没人举手。不过还是有4、5个学生听得明白,只是没好意思举手。
在得知大部分人都没有听明白,我就又讲了一个《孙子算经》中非常有趣的解题方法。这个方法显然更适合小学生的智力水平。
在本节课中,可喜的是我们班有4、5个能够听明白的!